Takayuki NAKACHI Katsumi YAMASHITA Nozomu HAMADA
The present paper investigates a two-dimensional (2-D) adaptive lattice filter used for modeling 2-D AR fields. The 2-D least mean square (LMS) lattice algorithm is used to update the filter coefficients. The proposed adaptive lattice filter can represent a wider class of 2-D AR fields than previous ones. Furthremore, its structure is also shown to possess orthogonality in the backward prediction error fields. These result in superior convergence and tracking properties to the adaptive transversal filter and other adaptive 2-D lattice models. Then, the convergence property of the proposed adaptive LMS lattice algorithm is discussed. The effectiveness of the proposed model is evaluated for parameter identification through computer simulation.
Toshihiko FUKUE Atsushi FUJITA Nozomu HAMADA
In this paper we propose a stepped-FM array radar system that can precisely estimate the target position by combining S- and T-MUSIC and adaptive beamforming. By adopting the adaptive beamformer as a preprocessor of T-MUSIC, the proposed system can uniquely determine the direction and distance of targets. In addition, the distance estimation precision is improved by introducing beamformer.
In the design of 3-D filter detecting Linear Trajectory Signal (LTS), there may be paid little attention to the noise rejective characteristics. In this paper, we treat the noise rejection ability of the filter detecting LTS having margins both in its velocity and direction.
In this report, we propose a tracking algorithm of speaker direction using microphones located at vertices of an equilateral triangle. The method realizes tracking by minimizing a performance index that consists of the cross spectra at three different microphone pairs in the triangular array. We adopt the steepest descent method to minimize it, and for guaranteeing global convergence to the correct direction with high accuracy, we alter the performance index during the adaptation depending on the convergence state. Through some computer simulation and experiments in a real acoustic environment, we show the effectiveness of the proposed method.